foa3d.input¶
- class foa3d.input.CustomFormatter(prog, indent_increment=2, max_help_position=24, width=None)¶
- foa3d.input.get_cli_parser()¶
Parse command line arguments.
- Returns
cli_args – populated namespace of command line arguments
- Return type
see ArgumentParser.parse_args
- foa3d.input.get_frangi_config(cli_args, in_img)¶
Get Frangi filter configuration.
- Parameters
cli_args (see ArgumentParser.parse_args) – populated namespace of command line arguments
in_img (dict) –
input image dictionary (extended)
- data: numpy.ndarray or NumPy memory-map object (axis order=(Z,Y,X) or (Z,Y,X,C) or (Z,C,Y,X))
3D microscopy image
- ts_msk: numpy.ndarray (dtype=bool)
tissue reconstruction binary mask
- ch_ax: int
RGB image channel axis (either 1, 3, or None for grayscale images)
- fb_ch: int
neuronal fibers channel
- bc_ch: int
brain cell soma channel
- msk_bc: bool
if True, mask neuronal bodies within the optionally provided channel
- psf_fwhm: numpy.ndarray (shape=(3,), dtype=float)
3D FWHM of the PSF [μm]
- px_sz: numpy.ndarray (shape=(3,), dtype=float)
pixel size [μm]
- name: str
name of the 3D microscopy image
- is_vec: bool
vector field flag
- shape: numpy.ndarray (shape=(3,), dtype=int)
total image shape
- shape_um: numpy.ndarray (shape=(3,), dtype=float)
total image shape [μm]
- item_sz: int
image item size [B]
- Returns
frangi_cfg –
Frangi filter configuration
- alpha: float
plate-like score sensitivity
- beta: float
blob-like score sensitivity
- gamma: float
background score sensitivity
- scales_px: numpy.ndarray (dtype=float)
Frangi filter scales [px]
- scales_um: numpy.ndarray (dtype=float)
Frangi filter scales [μm]
- smooth_sd: numpy.ndarray (shape=(3,), dtype=int)
3D standard deviation of the smoothing Gaussian filter [px]
- px_sz: numpy.ndarray (shape=(3,), dtype=float)
pixel size [μm]
- fb_thr: float or skimage.filters thresholding method
Frangi filter probability response threshold
- bc_ch: int
neuronal bodies channel
- fb_ch: int
myelinated fibers channel
- msk_bc: bool
if True, mask neuronal bodies within the optionally provided channel
- hsv_cmap: bool
generate HSV colormap of 3D fiber orientations
- exp_all: bool
export all images
- z_out: NumPy slice object
output z-range
- Return type
- foa3d.input.get_image_info(cli_args)¶
Get microscopy image file path and format.
- Parameters
cli_args (see ArgumentParser.parse_args) – populated namespace of command line arguments
- Returns
in_img (dict) –
- input image dictionary
- fb_ch: int
neuronal fibers channel
- bc_ch: int
brain cell soma channel
- msk_bc: bool
if True, mask neuronal bodies within the optionally provided channel
- psf_fwhm: numpy.ndarray (shape=(3,), dtype=float)
3D FWHM of the PSF [μm]
- px_sz: numpy.ndarray (shape=(3,), dtype=float)
pixel size [μm]
- path: str
path to the 3D microscopy image
- name: str
name of the 3D microscopy image
- fmt: str
format of the 3D microscopy image
- is_tiled: bool
True for tiled reconstructions aligned using ZetaStitcher
msk_mip (bool) – apply tissue reconstruction mask (binarized MIP)
- foa3d.input.get_image_size(in_img)¶
Get information on the size of the input 3D microscopy image.
- Parameters
in_img (dict) –
input image dictionary
- data: numpy.ndarray or NumPy memory-map object (axis order=(Z,Y,X) or (Z,Y,X,C) or (Z,C,Y,X))
3D microscopy image
- ch_ax: int
RGB image channel axis (either 1, 3, or None for grayscale images)
- ts_msk: numpy.ndarray (dtype=bool)
tissue reconstruction binary mask
- fb_ch: int
neuronal fibers channel
- bc_ch: int
brain cell soma channel
- msk_bc: bool
if True, mask neuronal bodies within the optionally provided channel
- psf_fwhm: numpy.ndarray (shape=(3,), dtype=float)
3D FWHM of the PSF [μm]
- px_sz: numpy.ndarray (shape=(3,), dtype=float)
pixel size [μm]
- path: str
path to the 3D microscopy image
- name: str
name of the 3D microscopy image
- fmt: str
format of the 3D microscopy image
- is_tiled: bool
True for tiled reconstructions aligned using ZetaStitcher
- is_vec: bool
vector field flag
- Return type
None
- foa3d.input.get_resolution(cli_args)¶
Retrieve microscopy resolution information from command line arguments.
- Parameters
cli_args (see ArgumentParser.parse_args) – populated namespace of command line arguments
- Returns
px_sz (tuple (shape=(3,), dtype=float)) – pixel size [μm]
psf_fwhm (tuple (shape=(3,), dtype=float)) – 3D PSF FWHM [μm]
- foa3d.input.get_resource_config(cli_args, frangi_cfg)¶
Retrieve resource usage configuration of the Foa3D tool.
- Parameters
cli_args (see ArgumentParser.parse_args) – populated namespace of command line arguments
frangi_cfg (dict) –
Frangi filter configuration
- alpha: float
plate-like score sensitivity
- beta: float
blob-like score sensitivity
- gamma: float
background score sensitivity
- scales_px: numpy.ndarray (dtype=float)
Frangi filter scales [px]
- scales_um: numpy.ndarray (dtype=float)
Frangi filter scales [μm]
- smooth_sd: numpy.ndarray (shape=(3,), dtype=int)
3D standard deviation of the smoothing Gaussian filter [px]
- px_sz: numpy.ndarray (shape=(3,), dtype=float)
pixel size [μm]
- bc_ch: int
neuronal bodies channel
- fb_ch: int
myelinated fibers channel
- msk_bc: bool
if True, mask neuronal bodies within the optionally provided channel
- hsv_cmap: bool
generate HSV colormap of 3D fiber orientations
- exp_all: bool
export all images
- rsz: numpy.ndarray (shape=(3,), dtype=float)
3D image resize ratio
- Return type
None
- foa3d.input.load_data(in_img, tmp_dir, msk_mip=False)¶
Load 3D microscopy data.
- Parameters
in_img (dict) –
- input image dictionary
- fb_ch: int
neuronal fibers channel
- bc_ch: int
brain cell soma channel
- msk_bc: bool
if True, mask neuronal bodies within the optionally provided channel
- psf_fwhm: numpy.ndarray (shape=(3,), dtype=float)
3D FWHM of the PSF [μm]
- px_sz: numpy.ndarray (shape=(3,), dtype=float)
pixel size [μm]
- path: str
path to the 3D microscopy image
- name: str
name of the 3D microscopy image
- fmt: str
format of the 3D microscopy image
- is_tiled: bool
True for tiled reconstructions aligned using ZetaStitcher
tmp_dir (str) – path to temporary folder
msk_mip (bool) – apply tissue reconstruction mask (binarized MIP)
- Return type
None
- foa3d.input.load_microscopy_image(cli_args)¶
Load 3D microscopy image from TIFF, or ZetaStitcher .yml file. Alternatively, the processing pipeline accepts as input TIFF or NumPy files of fiber orientation vector data: in this case, the Frangi filter stage will be skipped.
- Parameters
cli_args (see ArgumentParser.parse_args) – populated namespace of command line arguments
- Returns
in_img (dict) –
input image dictionary
- data: numpy.ndarray (axis order=(Z,Y,X) or (Z,Y,X,C) or (Z,C,Y,X))
3D microscopy image
- ch_ax: int
RGB image channel axis (either 1, 3, or None for grayscale images)
- ts_msk: numpy.ndarray (dtype=bool)
tissue reconstruction binary mask
- fb_ch: int
neuronal fibers channel
- bc_ch: int
brain cell soma channel
- msk_bc: bool
if True, mask neuronal bodies within the optionally provided channel
- psf_fwhm: numpy.ndarray (shape=(3,), dtype=float)
3D FWHM of the PSF [μm]
- px_sz: numpy.ndarray (shape=(3,), dtype=float)
pixel size [μm]
- path: str
path to the 3D microscopy image
- name: str
name of the 3D microscopy image
- fmt: str
format of the 3D microscopy image
- is_tiled: bool
True for tiled reconstructions aligned using ZetaStitcher
- is_vec: bool
vector field flag
- shape: numpy.ndarray (shape=(3,), dtype=int)
total image shape
- shape_um: numpy.ndarray (shape=(3,), dtype=float)
total image shape [μm]
- item_sz: int
image item size [B]
save_dirs (dict) – saving directories (‘frangi’: Frangi filter, ‘odf’: ODF analysis, ‘tmp’: temporary files)